Posts

Showing posts with the label doutifyJEE

Let aₙ be the nᵗʰ term of an A.P. If Sₙ = a₁ + a₂ + a₃ + ⋯ + aₙ = 700, a₆ = 7 and S₇ = 7, then aₙ is equal to:

Image
❓ Question Let a n a_n a n ​ be the n th n^{\text{th}}  term of an A.P. If S n = a 1 + a 2 + ⋯ + a n = 700 ,    a 6 = 7 S_n=a_1+a_2+\cdots+a_n=700,\; a_6=7  and S 7 = 7 S_7=7 , then find a n a_n ​ . 🖼️ Question Image ✍️ Short Solution Let the A.P. have first term a 1 a_1 ​ and common difference d d . Then: a 6 = a 1 + 5 d = 7. Sum of first 7 terms: S 7 = 7 2 ( 2 a 1 + 6 d ) = 7. S_7 = \frac{7}{2}\big(2a_1 + 6d\big) = 7. Divide both sides by 7: 1 2 ( 2 a 1 + 6 d ) = 1 ⇒ a 1 + 3 d = 1. \frac{1}{2}\big(2a_1 + 6d\big) = 1 \quad\Rightarrow\quad a_1 + 3d = 1. Now subtract the two linear equations: ( a 1 + 5 d ) − ( a 1 + 3 d ) = 7 − 1    ⇒    2 d = 6    ⇒    d = 3. (a_1+5d) - (a_1+3d) = 7 - 1 \;\Rightarrow\; 2d = 6 \;\Rightarrow\; d = 3. Then a 1 + 3 d = 1 ⇒ a 1 + 9 = 1 ⇒ a 1 = − 8. a_1 + 3d = 1 \Rightarrow a_1 + 9 = 1 \Rightarrow a_1 = -8. So the A.P. is − 8 ,    − 5 ,    − 2 ,    1 ,    4 ,    7 ,    10 , … Next, use the condition S n = 700 S_n = 700 . Sum ...

Let a random variable X take values 0, 1, 2, 3 with P(X = 0) = p, P(X = 1) = p, P(X = 2) = P(X = 3) and E(X²) = 2E(X). Then the value of 8p−1 is:

Image
❓ Question Let a random variable X X  take values 0 , 1 , 2 , 3 0,1,2,3  with P ( X = 0 ) = p , P ( X = 1 ) = p , P ( X = 2 ) = P ( X = 3 ) and it is given that    E ( X 2 ) = 2 E ( X ) . \;E(X^2)=2E(X). Find the value of 8 p − 1. 🖼️ Question Image ✍️ Short Solution Let q = P ( X = 2 ) = P ( X = 3 ) q = P(X=2)=P(X=3) . Since total probability is 1: 2 p + 2 q = 1 ⇒ p + q = 1 2 ⇒ q = 1 2 − p . Compute the expectations: E ( X ) = 0 ⋅ p + 1 ⋅ p + 2 ⋅ q + 3 ⋅ q = p + 5 q . E(X) = 0\cdot p + 1\cdot p + 2\cdot q + 3\cdot q = p + 5q. E ( X 2 ) = 0 2 ⋅ p + 1 2 ⋅ p + 2 2 ⋅ q + 3 2 ⋅ q = p + 13 q . E(X^2) = 0^2\cdot p + 1^2\cdot p + 2^2\cdot q + 3^2\cdot q = p + 13q. Use the given relation E ( X 2 ) = 2 E ( X ) E(X^2)=2E(X) : p + 13 q = 2 ( p + 5 q ) . Simplify: p + 13 q = 2 p + 10 q ⇒ − p + 3 q = 0 ⇒ 3 q = p . Substitute q = 1 2 − p q = \tfrac12 - p  into 3 q = p 3q = p : 3 ( 1 2 − p ) = p ⇒ 3 2 − 3 p = p 3\left(\tfrac12 - p\right) = p \quad\Rightarr...

A bag contains 19 unbiased coins and one coin with head on both sides. One coin drawn at random is tossed and head turns up. If the probability that the drawn coin was unbiased, is m/n where gcd(m, n) = 1, then n² − m² is equal to:

Image
  Question A bag contains 19 unbiased coins and one coin with heads on both sides . One coin is drawn at random and tossed; a head turns up. If the probability that the drawn coin was unbiased is m n \dfrac{m}{n} n m ​ where gcd ⁡ ( m , n ) = 1 \gcd(m,n)=1 , then find: n 2 − m 2 Question Image Short Solution Define events: U U : chosen coin is unbiased D D : chosen coin is double-headed H H : head turns up Use Bayes’ theorem: P ( U ∣ H ) = P ( U ) P ( H ∣ U ) P ( U ) P ( H ∣ U ) + P ( D ) P ( H ∣ D )​ Compute each term: P ( U ) = 19 20 P(U)=\dfrac{19}{20} ​ P ( D ) = 1 20 P(D)=\dfrac{1}{20} ​ P ( H ∣ U ) = 1 2 P(H|U)=\dfrac{1}{2} fair coin) P ( H ∣ D ) = 1 P(H|D)=1 (double-headed always gives head) Plug values, simplify to find m m  and n n . Compute n 2 − m 2 n^{2}-m^{2} Image Solution Conclusion Step 1: Apply Bayes P ( U ∣ H ) = 19 20 ⋅ 1 2 19 20 ⋅ 1 2 + 1 20 ⋅ 1 ​ ​ Step 2: Simplify Numerator: 19 20 ⋅ 1 2 = 19...

Let y = y(x) be the solution of the differential equation (x² + 1)y′ − 2xy = (x⁴ + 2x² + 1)cosx, y(0) = 1. Then ³∫₋₃ y(x) dx is:

Image
  Question Let y = y ( x ) y = y(x) be the solution of the differential equation ( x 2 + 1 ) y ′ − 2 x y = ( x 4 + 2 x 2 + 1 ) cos ⁡ x , with y ( 0 ) = 1 y(0) = 1 . Then evaluate: ∫ − 3 3 y ( x )   d x Question Image Short Solution Rewrite the ODE in standard linear form: y ′ − 2 x x 2 + 1 y = ( x 4 + 2 x 2 + 1 ) cos ⁡ x x 2 + 1​ Find the integrating factor : μ ( x ) = e ∫ − 2 x x 2 + 1 d x = e − ln ⁡ ( x 2 + 1 ) = 1 x 2 + 1​ Multiply the equation by μ ( x ) \mu(x) : d d x ( y x 2 + 1 ) = cos ⁡ x Integrate: y x 2 + 1 = sin ⁡ x + C Apply y ( 0 ) = 1 y(0)=1 : 1 1 = 0 + C    ⟹    C = 1 Hence: y ( x ) = ( x 2 + 1 ) ( sin ⁡ x + 1 ) Compute the definite integral: I = ∫ − 3 3 y ( x )   d x = ∫ − 3 3 ( x 2 + 1 ) ( sin ⁡ x + 1 ) d x Image Solution Conclusion Break the integral: I = ∫ − 3 3 ( x 2 + 1 ) sin ⁡ x   d x + ∫ − 3 3 ( x 2 + 1 ) d x First term: ( x 2 + 1 ) sin ⁡ x (x^{2}+1)\sin x  is an odd function (because x 2 + 1 x^{2}+1  is eve...

If the range of the function f(x) = 5-x/x²−3x+2, x ≠ 1,2, is (−∞, α] ∪ [β, ∞), then α² + β² is equal to:

Image
  Question If the range of the function f ( x ) = 5 − x x 2 − 3 x + 2 , x ≠ 1 , 2 is ( − ∞ , α ] ∪ [ β , ∞ ) (-\infty, \alpha] \cup [\beta, \infty) , then find the value of α 2 + β 2 \alpha^{2}+\beta^{2} . Question Image Short Solution Let y = 5 − x x 2 − 3 x + 2 y = \dfrac{5 - x}{x^{2} - 3x + 2} ' Multiply through to get: y ( x 2 − 3 x + 2 ) = 5 − x Rearrange to a quadratic in x x : y x 2 − 3 y x + 2 y − 5 + x = 0 or y x 2 + ( − 3 y + 1 ) x + ( 2 y − 5 ) = 0 For x x  to be real, discriminant Δ \Delta  must be non-negative: Δ = ( − 3 y + 1 ) 2 − 4 y ( 2 y − 5 ) ≥ 0 Simplify Δ \Delta : Δ = 9 y 2 − 6 y + 1 − 8 y 2 + 20 y = y 2 + 14 y + 1 Solve Δ = 0 \Delta =0 : y = − 14 ± 196 − 4 2 = − 14 ± 192 2 = − 14 ± 8 3 2 y = \frac{-14\pm \sqrt{196-4}}{2} = \frac{-14\pm \sqrt{192}}{2} = \frac{-14\pm 8\sqrt3}{2} ​ ​ y = − 7 ± 4 3 y = -7 \pm 4\sqrt3 Because the quadratic in x x  is valid for Δ ≥ 0 \Delta\ge0 , the range of y y  is: ( − ∞ ,...