JEE Number Theory: Big Powers? Use Mod & Cycle! š„
❓ Concept
š¬ Remainder Tricks for Huge Powers
Kabhi-kabhi JEE mein aise questions milte hain jahan
power itna bada hota hai ki calculator bhi give-up kar de š
Tab kaam aata hai modulo + cyclic pattern —
aur poora question 1-min trick se solve ho jaata hai.
š¼️ Concept Image
✍️ Short Explanation
Basic funda:
š Remainder depends on modulo behaviour — not on size of the number.
Isliye pehle number ko chhota banao, phir power handle karo.
š¹ Step 1 — Remainder Concept
If
then
š Matlab:
-
Pehle base ko modulo se reduce karo
-
Phir power lagao
š¹ Step 2 — Reduce the Base First (Always!)
Large number ko directly power nahi karte.
Pehle:
Phir sirf r ke saath kaam karo —
calculation ultra-simple ho jaata hai.
Example:
So:
š¹ Step 3 — Cyclic Pattern of Powers
Modulo mein powers repeat hone lagte hain.
Example (mod 7):
Now cycle repeats again from 3.
š Cycle length = 6
Isliye:
š¹ Step 4 — Handle Very Large Exponents
Agar cycle length = k, toh:
š Matlab exponent ko cycle length se reduce kar do.
Example:
Cycle length = 6
So:
š¹ Step 5 — JEE Strategy (Golden Framework š„)**
Har large-power remainder problem ke liye:
1️⃣ Base ko mod divisor se reduce karo
2️⃣ Power cycle find karo
3️⃣ Exponent ko cycle length se reduce karo
4️⃣ Final remainder pick karo
Bas — question crack!
✅ Final Takeaway
š§ Huge Power = Small Game
-
Number chhota karo
-
Power cycle identify karo
-
Exponent reduce karo
-
Remainder nikaalo
Is trick ko master kar liya toh
š Number System ke hard questions free marks ban jaate hain.
Comments
Post a Comment
Have a doubt? Drop it below and we'll help you out!