JEE Number Theory: Big Powers? Use Mod & Cycle! šŸ”„

 

❓ Concept

šŸŽ¬ Remainder Tricks for Huge Powers

Kabhi-kabhi JEE mein aise questions milte hain jahan
power itna bada hota hai ki calculator bhi give-up kar de šŸ˜…

Tab kaam aata hai modulo + cyclic pattern
aur poora question 1-min trick se solve ho jaata hai.


šŸ–¼️ Concept Image

JEE Number Theory: Big Powers? Use Mod & Cycle! šŸ”„


✍️ Short Explanation

Basic funda:

šŸ‘‰ Remainder depends on modulo behaviour — not on size of the number.
Isliye pehle number ko chhota banao, phir power handle karo.


šŸ”¹ Step 1 — Remainder Concept

If

ar(modn)a \equiv r \pmod n

then

akrk(modn)a^k \equiv r^k \pmod n

šŸ“Œ Matlab:

  • Pehle base ko modulo se reduce karo

  • Phir power lagao


šŸ”¹ Step 2 — Reduce the Base First (Always!)

Large number ko directly power nahi karte.
Pehle:

amodn=ra \mod n = r

Phir sirf r ke saath kaam karo
calculation ultra-simple ho jaata hai.

Example:

38864mod73883mod7388^{64} \mod 7 \Rightarrow 388 \equiv 3 \mod 7

So:

38864364mod7388^{64} \equiv 3^{64} \mod 7

šŸ”¹ Step 3 — Cyclic Pattern of Powers

Modulo mein powers repeat hone lagte hain.

Example (mod 7):

31=332=9233=634=18435=12536=1513^1 = 3 \\ 3^2 = 9 \equiv 2 \\ 3^3 = 6 \\ 3^4 = 18 \equiv 4 \\ 3^5 = 12 \equiv 5 \\ 3^6 = 15 \equiv 1

Now cycle repeats again from 3.

šŸ‘‰ Cycle length = 6

Isliye:

36k1(mod7)3^{6k} \equiv 1 \pmod 7

šŸ”¹ Step 4 — Handle Very Large Exponents

Agar cycle length = k, toh:

ammodn=a(mmodk)modna^m \mod n = a^{(m \mod k)} \mod n

šŸ“Œ Matlab exponent ko cycle length se reduce kar do.

Example:

364mod73^{64} \mod 7

Cycle length = 6

64mod6=464 \mod 6 = 4

So:

36434=814(mod7)

šŸ”¹ Step 5 — JEE Strategy (Golden Framework šŸ”„)**

Har large-power remainder problem ke liye:

1️⃣ Base ko mod divisor se reduce karo
2️⃣ Power cycle find karo
3️⃣ Exponent ko cycle length se reduce karo
4️⃣ Final remainder pick karo

Bas — question crack!



✅ Final Takeaway

🧠 Huge Power = Small Game

  • Number chhota karo

  • Power cycle identify karo

  • Exponent reduce karo

  • Remainder nikaalo

Is trick ko master kar liya toh
šŸ‘‰ Number System ke hard questions free marks ban jaate hain.


Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE