Resonance in X₂Y can be represented as X = X⁺ = Y⁻ ↔ :X ≡ X⁺ − Y: The enthalpy of formation of X₂Y (X(g) + 1/2Y₂(g) → X₂Y(g)) is 80 kJ mol⁻¹. The magnitude of resonance energy of X₂Y is ______ kJ mol⁻¹ (nearest integer value).
Question: Resonance in X 2 Y X_2Y can be represented as X = X + = Y − ↔ : X ≡ X + − Y : The enthalpy of formation of X 2 Y X_2Y ( X ( g ) + 1 2 Y 2 ( g ) → X 2 Y ( g ) ) \big(\mathrm{X(g)} + \tfrac{1}{2}\mathrm{Y_2(g)} \rightarrow X_2Y(g)\big) is 80 kJ mol⁻¹ . The magnitude of resonance energy of X 2 Y X_2Y is _____ kJ mol⁻¹ (nearest integer value). 📷 Question Image: Short Solution (Text): Step 1: Identify the prototype The resonance set : X ≡ X + − Y : ↔ X = X + = Y − \mathrm{:X \equiv X^{+} - Y:} \leftrightarrow \mathrm{X = X^{+} = Y^{-}} is the classic pattern of N 2 O \mathrm{N_2O} (take X = N X = \mathrm{N} , Y = O Y = \mathrm{O} ). Step 2: Use the given formation enthalpy For this species, the extra stabilization due to resonance (resonance energy) is taken as the magnitude corresponding to the given energetic stabilization relative to a localized single structure. With Δ H f ∘ \Delta H_f^\circ provided as 80\ \mathrm{kJ\,...