Infinite Solutions + Geometry Trick in 59 Seconds! 🔥

❓ Concept

🎬 Infinite Solutions + Geometry Trick in 59 Sec

Teen equations, teen variables…
par answer bole “infinitely many solutions”?

👉 Samajh jao — determinant zero ho chuka hai
aur geometry ka scene start ho gaya hai 🔥


✍️ Short Explanation

Aise questions mein students sirf algebra pe atak jaate hain,
jabki JEE ka smart move hota hai:

👉 Algebra se parameters nikaalo
👉 Geometry se final answer (radius, distance, etc.)


🔹 Step 1 — Infinite Solutions Condition (CORE RULE 💯)**

System:

AX=BAX = B

Infinite solutions tab milte hain jab:

A=0andrank(A)=rank(AB)<number of variables|A| = 0 \quad \text{and} \quad \operatorname{rank}(A)=\operatorname{rank}(A|B)<\text{number of variables}

📌 Jaise hi yeh dikhe:

  • System dependent hai

  • Parameters (λ, μ, …) enter karte hain


🔹 Step 2 — Geometric Meaning (VERY IMPORTANT 🔥)**

3 variables ⇒ 3D space

Har linear equation ⇒ ek plane

👉 Infinite solutions ka matlab:

  • Planes single point pe nahi

  • Balki ek LINE ke along intersect kar rahe hain

So:

  • Unique solution ❌

  • No solution ❌

  • Line of solutions ✔️


🔹 Step 3 — Finding Parameters (λ, μ)**

Jab A=0|A|=0:

  • Coefficient rows/columns linearly dependent hote hain

  • Matlab:

One equation=linear combination of others\text{One equation} = \text{linear combination of others}

👉 Coefficients compare karo
👉 RHS bhi compare karo

Isse:

λ, μ\lambda,\ \mu

jaise parameters directly mil jaate hain

📌 Yeh purely algebraic step hai.


🔹 Step 4 — Link to Coordinate Geometry (SMART TURN 😎)**

Ab twist aata hai 👇

Jo parameters mile:

(λ,μ)(\lambda,\mu)

👉 Yeh 2D plane ka ek point ban jaata hai

Aur question often deta hai:

ax+by+c=0ax+by+c=0

(as a line)

Ab problem Matrices se Geometry mein shift ho jaata hai 🔁


🔹 Step 5 — Radius of Circle Touching a Line

Agar bola ho:

“Circle with centre (λ,μ)(\lambda,\mu) touches the line”

Toh:

  • Radius = perpendicular distance from centre to line

Formula:

r=aλ+bμ+ca2+b2r=\frac{|a\lambda+b\mu+c|}{\sqrt{a^2+b^2}}

📌 Yeh standard distance-from-point-to-line formula hai —
no derivation needed.


✅ Final Takeaway

🧠 Infinite Solutions + Geometry Golden Rules

  • A=0|A|=0 ⇒ system dependent

  • Infinite solutions ⇒ planes intersect in a line

  • Parameters ⇒ algebra se

  • Final quantity ⇒ geometry se

  • Radius ⇒ distance formula

Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE