JEE Number Theory: Big Powers? Use Mod & Cycle! 🔥
❓ Concept 🎬 Remainder Tricks for Huge Powers Kabhi-kabhi JEE mein aise questions milte hain jahan power itna bada hota hai ki calculator bhi give-up kar de 😅 Tab kaam aata hai modulo + cyclic pattern — aur poora question 1-min trick se solve ho jaata hai. 🖼️ Concept Image ✍️ Short Explanation Basic funda: 👉 Remainder depends on modulo behaviour — not on size of the number. Isliye pehle number ko chhota banao, phir power handle karo. 🔹 Step 1 — Remainder Concept If a ≡ r ( m o d n ) a \equiv r \pmod n then a k ≡ r k ( m o d n ) a^k \equiv r^k \pmod n 📌 Matlab: Pehle base ko modulo se reduce karo Phir power lagao 🔹 Step 2 — Reduce the Base First (Always!) Large number ko directly power nahi karte. Pehle: a m o d n = r a \mod n = r Phir sirf r ke saath kaam karo — calculation ultra-simple ho jaata hai. Example: 388 64 m o d 7 ⇒ 388 ≡ 3 m o d 7 388^{64} \mod 7 \Rightarrow 388 \equiv 3 \mod 7 So: 388 64 ≡ 3 64 m o d 7 38...