Let aₙ be the nᵗʰ term of an A.P. If Sₙ = a₁ + a₂ + a₃ + ⋯ + aₙ = 700, a₆ = 7 and S₇ = 7, then aₙ is equal to:

❓ Question

Let ana_n be the nthn^{\text{th}} term of an A.P. If Sn=a1+a2++an=700,  a6=7S_n=a_1+a_2+\cdots+a_n=700,\; a_6=7 and S7=7S_7=7, then find ana_n.


🖼️ Question Image

Let aₙ be the nᵗʰ term of an A.P. If Sₙ = a₁ + a₂ + a₃ + ⋯ + aₙ = 700, a₆ = 7 and S₇ = 7, then aₙ is equal to:


✍️ Short Solution

Let the A.P. have first term a1a_1 and common difference dd. Then:

  • a6=a1+5d=7.

  • Sum of first 7 terms:

    S7=72(2a1+6d)=7.S_7 = \frac{7}{2}\big(2a_1 + 6d\big) = 7.

    Divide both sides by 7:

    12(2a1+6d)=1a1+3d=1.\frac{1}{2}\big(2a_1 + 6d\big) = 1 \quad\Rightarrow\quad a_1 + 3d = 1.

Now subtract the two linear equations:

(a1+5d)(a1+3d)=71    2d=6    d=3.(a_1+5d) - (a_1+3d) = 7 - 1 \;\Rightarrow\; 2d = 6 \;\Rightarrow\; d = 3.

Then a1+3d=1a1+9=1a1=8.a_1 + 3d = 1 \Rightarrow a_1 + 9 = 1 \Rightarrow a_1 = -8.

So the A.P. is 8,  5,  2,  1,  4,  7,  10,

Next, use the condition Sn=700S_n = 700. Sum formula:

Sn=n2(2a1+(n1)d)=n2(2(8)+(n1)3)=n2(3n19).S_n=\frac{n}{2}\big(2a_1+(n-1)d\big)=\frac{n}{2}\big(2(-8)+(n-1)3\big) =\frac{n}{2}(3n-19).

Hence

n(3n19)2=700n(3n19)=1400.\frac{n(3n-19)}{2}=700 \quad\Rightarrow\quad n(3n-19)=1400.

This gives the quadratic:

3n219n1400=0.3n^2-19n-1400=0.

Compute discriminant: Δ=(19)2+431400=361+16800=17161=1312.\Delta = (-19)^2 + 4\cdot3\cdot1400 = 361 + 16800 = 17161 =131^2.
So positive root:

n=19+1316=1506=25.n=\frac{19+131}{6}=\frac{150}{6}=25.

Therefore n=25n=25. Finally,

an=a1+(n1)d=8+243=8+72=64.a_n = a_1 + (n-1)d = -8 + 24\cdot 3 = -8 + 72 = 64.

🖼️ Image Solution

Let aₙ be the nᵗʰ term of an A.P. If Sₙ = a₁ + a₂ + a₃ + ⋯ + aₙ = 700, a₆ = 7 and S₇ = 7, then aₙ is equal to:


✅ Conclusion & Video Solution

Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE