Posts

Showing posts with the label DoubtifyJEE

Projectile Motion Trick: Time of Flight Ratio in 60 Seconds! 🔥

Image
  ❓ Question Two projectiles are fired from the ground with the same initial speed from the same point , at angles ( 45 ∘ + α ) and ( 45 ∘ − α ) with the horizontal. Find the ratio of their times of flight . 🖼️ Question Image ✍️ Short Solution This is a classic JEE symmetry question from projectile motion. The trick is to remember what depends on sine and what depends on sine double-angle . 🔹 Step 1 — Time of flight formula For a projectile fired from ground with speed u u u at angle θ \theta : T = 2 u sin ⁡ θ g 📌 Time of flight depends on sin ⁡ θ \sin\theta sin θ (not on sin ⁡ 2 θ \sin 2\theta sin 2 θ ). 🔹 Step 2 — Write times for both projectiles Let: T 1 T_1 ​ = time of flight at angle ( 45 ∘ + α ) (45^\circ+\alpha) T 2 T_2 ​ = time of flight at angle ( 45 ∘ − α ) Using the formula: T 1 = 2 u sin ⁡ ( 45 ∘ + α ) g T_1=\frac{2u\sin(45^\circ+\alpha)}{g} T 2 = 2 u sin ⁡ ( 45 ∘ − α ) g T_2=\frac{2u\sin(45^\circ-\alpha)}{g} 🔹 Step 3 — Take the r...

Infinite Solutions + Geometry Trick in 59 Seconds! 🔥

Image
❓ Concept 🎬 Infinite Solutions + Geometry Trick in 59 Sec Teen equations, teen variables… par answer bole “infinitely many solutions” ? 👉 Samajh jao — determinant zero ho chuka hai aur geometry ka scene start ho gaya hai 🔥 ✍️ Short Explanation Aise questions mein students sirf algebra pe atak jaate hain, jabki JEE ka smart move hota hai: 👉 Algebra se parameters nikaalo 👉 Geometry se final answer (radius, distance, etc.) 🔹 Step 1 — Infinite Solutions Condition (CORE RULE 💯)** System: A X = B AX = B Infinite solutions tab milte hain jab: ∣ A ∣ = 0 and rank ⁡ ( A ) = rank ⁡ ( A ∣ B ) < number of variables |A| = 0 \quad \text{and} \quad \operatorname{rank}(A)=\operatorname{rank}(A|B)<\text{number of variables} 📌 Jaise hi yeh dikhe: System dependent hai Parameters (λ, μ, …) enter karte hain 🔹 Step 2 — Geometric Meaning (VERY IMPORTANT 🔥)** 3 variables ⇒ 3D space Har linear equation ⇒ ek plane 👉 Infinite solutions ka matlab: Pla...

JEE Number Theory: Big Powers? Use Mod & Cycle! 🔥

Image
  ❓ Concept 🎬 Remainder Tricks for Huge Powers Kabhi-kabhi JEE mein aise questions milte hain jahan power itna bada hota hai ki calculator bhi give-up kar de 😅 Tab kaam aata hai modulo + cyclic pattern — aur poora question 1-min trick se solve ho jaata hai. 🖼️ Concept Image ✍️ Short Explanation Basic funda: 👉 Remainder depends on modulo behaviour — not on size of the number. Isliye pehle number ko chhota banao, phir power handle karo. 🔹 Step 1 — Remainder Concept If a ≡ r ( m o d n ) a \equiv r \pmod n then a k ≡ r k ( m o d n ) a^k \equiv r^k \pmod n 📌 Matlab: Pehle base ko modulo se reduce karo Phir power lagao 🔹 Step 2 — Reduce the Base First (Always!) Large number ko directly power nahi karte. Pehle: a m o d     n = r a \mod n = r Phir sirf r ke saath kaam karo — calculation ultra-simple ho jaata hai. Example: 388 64 m o d     7 ⇒ 388 ≡ 3 m o d     7 388^{64} \mod 7 \Rightarrow 388 \equiv 3 \mod 7 So: 388 64 ≡ 3 64 m o d     7 38...

Let aₙ be the nᵗʰ term of an A.P. If Sₙ = a₁ + a₂ + a₃ + ⋯ + aₙ = 700, a₆ = 7 and S₇ = 7, then aₙ is equal to:

Image
❓ Question Let a n a_n a n ​ be the n th n^{\text{th}}  term of an A.P. If S n = a 1 + a 2 + ⋯ + a n = 700 ,    a 6 = 7 S_n=a_1+a_2+\cdots+a_n=700,\; a_6=7  and S 7 = 7 S_7=7 , then find a n a_n ​ . 🖼️ Question Image ✍️ Short Solution Let the A.P. have first term a 1 a_1 ​ and common difference d d . Then: a 6 = a 1 + 5 d = 7. Sum of first 7 terms: S 7 = 7 2 ( 2 a 1 + 6 d ) = 7. S_7 = \frac{7}{2}\big(2a_1 + 6d\big) = 7. Divide both sides by 7: 1 2 ( 2 a 1 + 6 d ) = 1 ⇒ a 1 + 3 d = 1. \frac{1}{2}\big(2a_1 + 6d\big) = 1 \quad\Rightarrow\quad a_1 + 3d = 1. Now subtract the two linear equations: ( a 1 + 5 d ) − ( a 1 + 3 d ) = 7 − 1    ⇒    2 d = 6    ⇒    d = 3. (a_1+5d) - (a_1+3d) = 7 - 1 \;\Rightarrow\; 2d = 6 \;\Rightarrow\; d = 3. Then a 1 + 3 d = 1 ⇒ a 1 + 9 = 1 ⇒ a 1 = − 8. a_1 + 3d = 1 \Rightarrow a_1 + 9 = 1 \Rightarrow a_1 = -8. So the A.P. is − 8 ,    − 5 ,    − 2 ,    1 ,    4 ,    7 ,    10 , … Next, use the condition S n = 700 S_n = 700 . Sum ...

Let a random variable X take values 0, 1, 2, 3 with P(X = 0) = p, P(X = 1) = p, P(X = 2) = P(X = 3) and E(X²) = 2E(X). Then the value of 8p−1 is:

Image
❓ Question Let a random variable X X  take values 0 , 1 , 2 , 3 0,1,2,3  with P ( X = 0 ) = p , P ( X = 1 ) = p , P ( X = 2 ) = P ( X = 3 ) and it is given that    E ( X 2 ) = 2 E ( X ) . \;E(X^2)=2E(X). Find the value of 8 p − 1. 🖼️ Question Image ✍️ Short Solution Let q = P ( X = 2 ) = P ( X = 3 ) q = P(X=2)=P(X=3) . Since total probability is 1: 2 p + 2 q = 1 ⇒ p + q = 1 2 ⇒ q = 1 2 − p . Compute the expectations: E ( X ) = 0 ⋅ p + 1 ⋅ p + 2 ⋅ q + 3 ⋅ q = p + 5 q . E(X) = 0\cdot p + 1\cdot p + 2\cdot q + 3\cdot q = p + 5q. E ( X 2 ) = 0 2 ⋅ p + 1 2 ⋅ p + 2 2 ⋅ q + 3 2 ⋅ q = p + 13 q . E(X^2) = 0^2\cdot p + 1^2\cdot p + 2^2\cdot q + 3^2\cdot q = p + 13q. Use the given relation E ( X 2 ) = 2 E ( X ) E(X^2)=2E(X) : p + 13 q = 2 ( p + 5 q ) . Simplify: p + 13 q = 2 p + 10 q ⇒ − p + 3 q = 0 ⇒ 3 q = p . Substitute q = 1 2 − p q = \tfrac12 - p  into 3 q = p 3q = p : 3 ( 1 2 − p ) = p ⇒ 3 2 − 3 p = p 3\left(\tfrac12 - p\right) = p \quad\Rightarr...

A bag contains 19 unbiased coins and one coin with head on both sides. One coin drawn at random is tossed and head turns up. If the probability that the drawn coin was unbiased, is m/n where gcd(m, n) = 1, then n² − m² is equal to:

Image
  Question A bag contains 19 unbiased coins and one coin with heads on both sides . One coin is drawn at random and tossed; a head turns up. If the probability that the drawn coin was unbiased is m n \dfrac{m}{n} n m ​ where gcd ⁡ ( m , n ) = 1 \gcd(m,n)=1 , then find: n 2 − m 2 Question Image Short Solution Define events: U U : chosen coin is unbiased D D : chosen coin is double-headed H H : head turns up Use Bayes’ theorem: P ( U ∣ H ) = P ( U ) P ( H ∣ U ) P ( U ) P ( H ∣ U ) + P ( D ) P ( H ∣ D )​ Compute each term: P ( U ) = 19 20 P(U)=\dfrac{19}{20} ​ P ( D ) = 1 20 P(D)=\dfrac{1}{20} ​ P ( H ∣ U ) = 1 2 P(H|U)=\dfrac{1}{2} fair coin) P ( H ∣ D ) = 1 P(H|D)=1 (double-headed always gives head) Plug values, simplify to find m m  and n n . Compute n 2 − m 2 n^{2}-m^{2} Image Solution Conclusion Step 1: Apply Bayes P ( U ∣ H ) = 19 20 ⋅ 1 2 19 20 ⋅ 1 2 + 1 20 ⋅ 1 ​ ​ Step 2: Simplify Numerator: 19 20 ⋅ 1 2 = 19...

Let y = y(x) be the solution of the differential equation (x² + 1)y′ − 2xy = (x⁴ + 2x² + 1)cosx, y(0) = 1. Then ³∫₋₃ y(x) dx is:

Image
  Question Let y = y ( x ) y = y(x) be the solution of the differential equation ( x 2 + 1 ) y ′ − 2 x y = ( x 4 + 2 x 2 + 1 ) cos ⁡ x , with y ( 0 ) = 1 y(0) = 1 . Then evaluate: ∫ − 3 3 y ( x )   d x Question Image Short Solution Rewrite the ODE in standard linear form: y ′ − 2 x x 2 + 1 y = ( x 4 + 2 x 2 + 1 ) cos ⁡ x x 2 + 1​ Find the integrating factor : μ ( x ) = e ∫ − 2 x x 2 + 1 d x = e − ln ⁡ ( x 2 + 1 ) = 1 x 2 + 1​ Multiply the equation by μ ( x ) \mu(x) : d d x ( y x 2 + 1 ) = cos ⁡ x Integrate: y x 2 + 1 = sin ⁡ x + C Apply y ( 0 ) = 1 y(0)=1 : 1 1 = 0 + C    ⟹    C = 1 Hence: y ( x ) = ( x 2 + 1 ) ( sin ⁡ x + 1 ) Compute the definite integral: I = ∫ − 3 3 y ( x )   d x = ∫ − 3 3 ( x 2 + 1 ) ( sin ⁡ x + 1 ) d x Image Solution Conclusion Break the integral: I = ∫ − 3 3 ( x 2 + 1 ) sin ⁡ x   d x + ∫ − 3 3 ( x 2 + 1 ) d x First term: ( x 2 + 1 ) sin ⁡ x (x^{2}+1)\sin x  is an odd function (because x 2 + 1 x^{2}+1  is eve...