Touching Circles Trick in 59 Seconds! 🔥 | JEE Geometry

 

❓ Concept

🎬 Touching Circles Trick in 59 Sec

Do circles sirf ek point par touch karte hain?
👉 Matlab pure geometry ka magic — no heavy algebra needed!

Bas centres + radii + section formula
aur answer seedha mil jaata hai.


🖼️ Concept Image

Touching Circles Trick in 59 Seconds! 🔥 | JEE Geometry


✍️ Short Explanation

External tangency ka matlab:
✔ Circles overlap nahi karte
✔ Bas ek hi point par touch karte hain
✔ Aur centres–contact point ek straight line par hote hain

Isliye equations likhne ki zarurat hi nahi
pure geometry se crack ho jaata hai.


🔹 Step 1 — Circle Touching Coordinate Axes

Agar koi circle x-axis aur y-axis dono ko touch karta hai
toh radius = axis se distance

Isliye centre hota hai:

(±r, ±r)(\pm r,\ \pm r)

Sign quadrant par depend karta hai.

Example:
Third quadrant → (r,r)(-r,-r)


🔹 Step 2 — External Tangency Condition (MOST IMPORTANT 🔥)**

Do circles externally touch tabhi:

Distance between centres=r1+r2\text{Distance between centres} = r_1+r_2

Bas — yahi sabse powerful condition hai.


🔹 Step 3 — Line of Centres Concept

Centres C1C_1 & C2C_2
aur point of contact PP

👉 ek hi straight line par hote hain

Aur PP line segment C1C2C_1C_2 ko radii ke ratio mein divide karta hai:

C1P:C2P=r1:r2C_1P : C_2P = r_1 : r_2

🔹 Step 4 — Coordinates of Point of Contact (Shortcut 😎)**

Use section formula:

P=r2C1+r1C2r1+r2P = \frac{r_2 C_1 + r_1 C_2}{r_1+r_2}

Isse direct α, β mil jaate hain
circle equation likhne ki bilkul zaroorat nahi!


🔹 Step 5 — JEE Strategy (Guaranteed Score 💯)**

Har touching-circles problem mein:

1️⃣ Pehle centres fix karo
(axes touch → centre = (±r,±r)(\pm r,\pm r))

2️⃣ Distance between centres = r1+r2r_1+r_2 lagao
→ radii/coordinates mil jaate hain

3️⃣ Section formula use karke
point of contact nikaalo

4️⃣ Jo expression poocha hai
जैसे (βα)2(\beta-\alpha)^2
→ directly evaluate karo

No messy algebra
👉 Pure logical geometry


✅ Final Takeaway

🧠 Golden Rules

  • Axis touch → centre = (±r, ±r)

  • External tangency → centre distance = r1+r2r_1+r_2

  • Centres + contact point = collinear

  • Contact point divides line in ratio r1:r2r_1:r_2

  • Section formula → direct coordinates

Isse circles ke tough JEE questions bhi lightning-fast ho jaate hain 🚀

Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE