JEE Main: Unit Vectors + Dot–Cross Product Made Easy 💡
❓ Concept
🎬 Dot–Cross Product Combo Trick in 59 Sec
JEE vectors mein jab dot product aur cross product ek saath dikh jaaye,
toh students confuse ho jaate hain.
Reality? 👉 Poora game orthogonality ka hota hai.
Agar perpendicularity samajh aa gayi,
toh calculation automatic zero ban jaati hai 🔥
🖼️ Concept Image
✍️ Short Explanation
Vector questions mein sabse common trap hota hai:
❌ Cross product ko unnecessarily expand karna
Jabki JEE ka smart rule hai:
👉 Dot product + cross product = perpendicularity check
🔹 Step 1 — Unit Vectors Basics
Agar â aur b̂ unit vectors hain:
📌 Unit vector ka magnitude 1 hota hai — always.
🔹 Step 2 — Cross Product Direction (KEY IDEA 🔥)**
👉 â aur b̂ dono ke perpendicular hota hai.
Isliye:
📌 Yeh identities directly use karo — bina calculation ke.
🔹 Step 3 — Dot Product with a Sum (Most Common Pattern 😎)**
Agar vector ho:
Then dot with â:
Now apply rules:
So:
👉 Cross-product term khatam — instantly!
🔹 Step 4 — Where Angle Information is Used
Angle ka role sirf do jagah aata hai:
📌 Baaki jagah:
-
perpendicular ⇒ dot = 0
-
no need to expand vectors
🔹 Step 5 — JEE Strategy (Golden Checklist ✅)**
Har dot–cross combo question mein:
1️⃣ Dot product ko linearly expand karo
2️⃣ Cross-product dot terms ko zero karo
3️⃣ â·b̂ ko cosθ se replace karo
4️⃣ Cross product ko kabhi bhi expand mat karo
5️⃣ Final expression simple number ban jaata hai
✅ Final Takeaway
🧠 Dot–Cross Master Rules
-
Unit vectors ⇒ magnitude = 1
-
Cross product ⇒ perpendicular
-
Dot with perpendicular ⇒ 0
-
Angle sirf cosθ / sinθ ke liye use hota hai
Is logic ko follow kiya,
👉 vector ke scary-looking questions bhi 10 sec mein solve ho jaate hain 🚀
Comments
Post a Comment
Have a doubt? Drop it below and we'll help you out!