JEE Main: Orthocentre + Area Question Made Easy 💡
❓ Question
Let be a triangle such that the equations of the lines
are given, and the points B and C lie on the x-axis.
If is the orthocentre of triangle , then the area of triangle is equal to ?
🖼️ Question Image
✍️ Short Solution
This problem combines:
✔ Finding points using line equations
✔ A key orthocentre shortcut when two vertices lie on the x-axis
✔ Computing area using base–height
🔹 Step 1 — Find coordinates of B and C
Since B and C lie on the x-axis, set .
For point B (on line AB):
So,
For point C (on line AC):
So,
🔹 Step 2 — Find coordinates of A
Point A is the intersection of lines and .
Solve:
From (2):
Substitute in (1):
Then
So,
🔹 Step 3 — Orthocentre shortcut (VERY IMPORTANT 🔥)**
When B and C lie on the x-axis, a powerful shortcut applies:
👉 The orthocentre is the intersection of:
-
the altitude from A, and
-
the vertical line through A (since base is horizontal)
Hence,
But we can do even faster 👇
For a triangle with base on x-axis,
So:
(This can also be verified using perpendicular slopes.)
🔹 Step 4 — Find area of triangle
Points:
Comments
Post a Comment
Have a doubt? Drop it below and we'll help you out!