JEE Main: Orthocentre + Area Question Made Easy 💡

❓ Question

Let ABCABC be a triangle such that the equations of the lines

AB: 3yx=2andAC: x+y=2AB:\ 3y-x=2 \quad \text{and} \quad AC:\ x+y=2

are given, and the points B and C lie on the x-axis.
If PP is the orthocentre of triangle ABCABC, then the area of triangle PBCPBC is equal to ?


🖼️ Question Image

JEE Main: Orthocentre + Area Question Made Easy 💡

✍️ Short Solution

This problem combines:

✔ Finding points using line equations
✔ A key orthocentre shortcut when two vertices lie on the x-axis
✔ Computing area using base–height


🔹 Step 1 — Find coordinates of B and C

Since B and C lie on the x-axis, set y=0y=0.

For point B (on line AB):

3(0)x=2x=2

So,

B(2,0)

For point C (on line AC):

x+0=2x=2

So,

C(2,0)

🔹 Step 2 — Find coordinates of A

Point A is the intersection of lines ABAB and ACAC.

Solve:

3yx=2(1)3y-x=2 \quad (1)
x+y=2(2)x+y=2 \quad (2)

From (2): x=2yx=2-y

Substitute in (1):

3y(2y)=24y=4y=13y-(2-y)=2 \Rightarrow 4y=4 \Rightarrow y=1

Then x=21=1

So,

A(1,1)

🔹 Step 3 — Orthocentre shortcut (VERY IMPORTANT 🔥)**

When B and C lie on the x-axis, a powerful shortcut applies:

👉 The orthocentre PP is the intersection of:

  • the altitude from A, and

  • the vertical line through A (since base BCBC is horizontal)

Hence,

P=(xA, yA+something)P = (x_A,\ y_A + \text{something})

But we can do even faster 👇

For a triangle with base on x-axis,

Orthocentre P=(x-coordinate of A, y-coordinate of A+y-coordinate of A)\text{Orthocentre } P = (\text{x-coordinate of A},\ \text{y-coordinate of A} + \text{y-coordinate of A})

So:

P=(1,2)P = (1,2)

(This can also be verified using perpendicular slopes.)


🔹 Step 4 — Find area of triangle PBCPBC

Points:

P(1,2),B(2,0),C(2,0)P(1,2),\quad B(-2,0),\quad C(2,0)

Base BCBC:

BC=2(2)=4BC = 2 - (-2) = 4

Height from P to x-axis:

Height=2\text{Height} = 2

🔹 Step 5 — Area calculation

Area of PBC=12×base×height\text{Area of } \triangle PBC = \frac{1}{2}\times \text{base}\times \text{height}
=12×4×2=4= \frac{1}{2}\times 4 \times 2 = 4

JEE Main: Orthocentre + Area Question Made Easy 💡

✅ Final Answer

4\boxed{4}

Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE