JEE Main: Geometric to Arithmetic Progression — Fast Method 💡

 

❓ Question

Let x1,x2,x3,x4x_1, x_2, x_3, x_4 be in a geometric progression.

If 2, 7, 9, 5 are subtracted respectively from

x1, x2, x3, x4,

then the resulting numbers form an arithmetic progression.

Find the value of

124(x1x2x3x4).

🖼️ Question Image

JEE Main: Geometric to Arithmetic Progression — Fast Method 💡


✍️ Short Solution

We’ll express the GP in standard form, apply the AP equal-difference condition, solve for the first term & common ratio, then compute the product — and finally divide by 24.

JEE Main: Geometric to Arithmetic Progression — Fast Method 💡


🔹 Step 1 — Assume the GP

Let

x1=a,x2=ar,x3=ar2,x4=ar3x_1=a,\quad x_2=ar,\quad x_3=ar^2,\quad x_4=ar^3

🔹 Step 2 — Form the AP after subtraction

Given that

a2,ar7,ar29,ar35a-2,\quad ar-7,\quad ar^2-9,\quad ar^3-5

are in AP, so:

(ar7)(a2)=(ar29)(ar7)(ar-7)-(a-2) = (ar^2-9)-(ar-7)

and

(ar29)(ar7)=(ar35)(ar29)(ar^2-9)-(ar-7) = (ar^3-5)-(ar^2-9)

🔹 Step 3 — Simplify the first equality

a(r1)5=a(r2r)2a(r-1)-5 = a(r^2-r)-2

Bring like terms together:

a(2r1r2)=3a(2r-1-r^2) = 3

Note:

2r1r2=(r1)22r-1-r^2 = -(r-1)^2

So:

a(r1)2=3a(r1)2=3(1)-a(r-1)^2 = 3 \quad\Rightarrow\quad a(r-1)^2 = -3 \quad (1)

🔹 Step 4 — Simplify the second equality

a(r2r)2=a(r3r2)+4a(r^2-r)-2 = a(r^3-r^2)+4

This becomes:

a(2r2rr3)=6a(2r^2-r-r^3) = 6

But:

2r2rr3=r(r1)22r^2-r-r^3 = -r(r-1)^2

So:

ar(r1)2=6ar(r1)2=6(2)-a r(r-1)^2 = 6 \quad\Rightarrow\quad a r(r-1)^2 = -6 \quad (2)

🔹 Step 5 — Divide (2) by (1)

ar(r1)2a(r1)2=63\frac{ar(r-1)^2}{a(r-1)^2} = \frac{-6}{-3}
r=2r = 2

Substitute back in (1):

a(21)2=3a=3a(2-1)^2 = -3 \Rightarrow a = -3

🔹 Step 6 — Write the GP terms

x1=3,x2=6,x3=12,x4=24x_1=-3,\quad x_2=-6,\quad x_3=-12,\quad x_4=-24

🔹 Step 7 — Verify the AP condition

Subtracting 2,7,9,5 gives:

5, 13, 21, 29-5,\ -13,\ -21,\ -29

Common difference = 8-8 ✔ AP confirmed


🔹 Step 8 — Compute the product

x1x2x3x4=(3)(6)(12)(24)=5184x_1x_2x_3x_4 = (-3)(-6)(-12)(-24) = 5184

So,

124(x1x2x3x4)=518424=216\frac{1}{24}(x_1x_2x_3x_4)=\frac{5184}{24}=216

✅ Final Answer

216\boxed{216}


Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE