Hyperbola Geometry in 59 Seconds — Smart Focus-Based Method ⚡

 

❓ Question

Consider the hyperbola

x2a2y2b2=1\frac{x^2}{a^2}-\frac{y^2}{b^2}=1

having one of its foci at

P(3,0).P(-3,\,0).

If the latus rectum through its other focus subtends a right angle at point PP, and

a2b2=α2β,α,βN,a^2b^2=\alpha\sqrt{2}-\beta, \quad \alpha,\beta\in\mathbb{N},

then the value of

α+β\alpha+\beta

is equal to ?


🖼️ Question Image

Hyperbola Geometry in 59 Seconds — Smart Focus-Based Method ⚡


✍️ Short Solution

This problem is a classic JEE Advanced–type geometry–algebra mix involving:

✔ Properties of a hyperbola
✔ Geometry of the latus rectum
Right-angle condition using vectors or slopes

We proceed step by step.

Hyperbola Geometry in 59 Seconds — Smart Focus-Based Method ⚡

🔹 Step 1 — Identify hyperbola parameters

Given:

x2a2y2b2=1\frac{x^2}{a^2}-\frac{y^2}{b^2}=1

For this hyperbola:

  • Centre = (0,0)(0,0)

  • Foci = (±c,0)(\pm c,0)

  • Where:

c2=a2+b2c^2=a^2+b^2

One focus is at P(3,0)P(-3,0), so:

c=3a2+b2=9(1)c=3 \Rightarrow a^2+b^2=9 \quad (1)

🔹 Step 2 — Coordinates of the other focus and its latus rectum

The other focus is at:

Q(3,0)Q(3,0)

The latus rectum through QQ is perpendicular to the transverse axis and has equation:

x=3x=3

For a hyperbola, the endpoints of the latus rectum are:

(3, ±b2a)\left(3,\ \pm\frac{b^2}{a}\right)

Let these points be:

L1(3,b2a),L2(3,b2a)L_1\left(3,\frac{b^2}{a}\right), \quad L_2\left(3,-\frac{b^2}{a}\right)

🔹 Step 3 — Right-angle condition at focus PP

Given:
The latus rectum subtends a right angle at P(3,0)P(-3,0).

That means:

L1PL2=90\angle L_1PL_2=90^\circ

Using vector geometry:

PL1PL2=0\vec{PL_1}\cdot\vec{PL_2}=0

🔹 Step 4 — Apply dot product

Vectors:

PL1=(6, b2a),PL2=(6, b2a)\vec{PL_1}=(6,\ \tfrac{b^2}{a}), \quad \vec{PL_2}=(6,\ -\tfrac{b^2}{a})

Dot product:

(6)(6)+(b2a)(b2a)=0(6)(6)+\left(\tfrac{b^2}{a}\right)\left(-\tfrac{b^2}{a}\right)=0
36b4a2=0b4a2=3636-\frac{b^4}{a^2}=0 \Rightarrow \frac{b^4}{a^2}=36

So:

b4=36a2b2=6a(2)b^4=36a^2 \Rightarrow b^2=6a \quad (2)

🔹 Step 5 — Solve using equations (1) and (2)

From (1):

a2+b2=9a^2+b^2=9

Substitute b2=6ab^2=6a:

a2+6a=9a^2+6a=9
a2+6a9=0a^2+6a-9=0

Solve:

a=6+36+362=3+32​

(negative root rejected)


🔹 Step 6 — Compute a2b2a^2b^2

From b2=6ab^2=6a:

a2b2=6a3a^2b^2=6a^3

Substitute a=3(21)a=3(\sqrt{2}-1)

a3=27(21)3=27(527)

So:

a2b2=6×27(527)=162(527)a^2b^2=6\times27(5\sqrt{2}-7) =162(5\sqrt{2}-7)
=81021134=810\sqrt{2}-1134

Thus:

α=810,β=1134\alpha=810,\quad \beta=1134

✅ Final Answer

α+β=810+1134=1944\alpha+\beta = 810+1134 = \boxed{1944}

Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE