Hyperbola Focus & Latus Rectum Trick in 59 Seconds! 🔥 | JEE Maths

❓ Concept

🎬 Hyperbola – Focus & Latus Rectum Concept in 59 Sec

Hyperbola dikhe, focus dikhe,
aur latus rectum right angle subtend kar raha ho?

👉 Samajh jao — geometry ka gold mine mil chuka hai 🔥
Yahan formula kam, logic zyada kaam karta hai.


🖼️ Concept Image

Hyperbola Focus & Latus Rectum Trick in 59 Seconds! 🔥 | JEE Maths


✍️ Short Explanation

Is type ke questions JEE mein isliye favourite hain kyunki:
✔ Algebra aur geometry perfectly combine hote hain
✔ Ek right-angle condition poora problem lock kar deta hai

Agar steps clear hain, toh answer clean aur fast nikalta hai.


🔹 Step 1 — Standard Hyperbola Basics (FOUNDATION 💯)**

Standard form:

x2a2y2b2=1

Is hyperbola ke liye:

c2=a2+b2c^2=a^2+b^2
Foci=(±c,0)

📌 Agar focus diya ho, toh c directly mil jaata hai
aur yahin se poora question start hota hai.


🔹 Step 2 — Latus Rectum of Hyperbola

Hyperbola ka latus rectum:

  • Har focus se guzarta hai

  • Transverse axis ke perpendicular hota hai

Equation:

x=±cx=\pm c

Endpoints:

(±c, ±b2a)\left(\pm c,\ \pm\frac{b^2}{a}\right)

Length:

Latus rectum=2b2a\text{Latus rectum}=\frac{2b^2}{a}

📌 Yeh coordinates exam mein direct use hote hain.


🔹 Step 3 — Right Angle Subtended at a Point (GAME CHANGER 🔥)**

Agar latus rectum ke endpoints
L1L_1 aur L2L_2
kisi point PP par 90° subtend karein:

Two equivalent methods:

  • Slope method:

(slope of PL1)×(slope of PL2)=1
  • Vector method (cleaner 😎):

PL1PL2=0

👉 Yehi ek condition aa aur bb ke beech
solid relation de deti hai.


🔹 Step 4 — Focus Given ⇒ Hyperbola Fixed

Question jab bole:

“One focus is at (x0,0)(x_0,0)

Toh:

c=x0a2+b2=c2

📌 Ab:

  • Ek equation geometry se

  • Ek equation right-angle condition se

👉 Solve karo → a,ba, b mil jaate hain.


🔹 Step 5 — Why JEE Asks a2b2a^2b^2 (SMART OBSERVATION 🧠)**

JEE often poochta hai:

a2b2=something

Reason:

  • a2b2a^2b^2 symmetric expression hai

  • Square roots hat jaate hain

  • Final answer clean form mein aata hai

Once aabb relation mil gaya:

a2b2direct computation


✅ Final Takeaway

🧠 Hyperbola Gold Rules

  • Focus ⇒ cc known

  • Hyperbola identity ⇒ a2+b2=c2a^2+b^2=c^2

  • Latus rectum endpoints ⇒ (±c,±b2/a)(\pm c,\pm b^2/a)

  • Right angle ⇒ dot product = 0

  • JEE loves ⇒ a2b2a^2b^2

Is concept ko samajh liya,
👉 Hyperbola ke tough-looking questions bhi 1 minute mein khatam 🚀

Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE