Hyperbola Focus & Latus Rectum Trick in 59 Seconds! 🔥 | JEE Maths
❓ Concept
🎬 Hyperbola – Focus & Latus Rectum Concept in 59 Sec
Hyperbola dikhe, focus dikhe,
aur latus rectum right angle subtend kar raha ho?
👉 Samajh jao — geometry ka gold mine mil chuka hai 🔥
Yahan formula kam, logic zyada kaam karta hai.
🖼️ Concept Image
✍️ Short Explanation
Is type ke questions JEE mein isliye favourite hain kyunki:
✔ Algebra aur geometry perfectly combine hote hain
✔ Ek right-angle condition poora problem lock kar deta hai
Agar steps clear hain, toh answer clean aur fast nikalta hai.
🔹 Step 1 — Standard Hyperbola Basics (FOUNDATION 💯)**
Standard form:
Is hyperbola ke liye:
📌 Agar focus diya ho, toh c directly mil jaata hai —
aur yahin se poora question start hota hai.
🔹 Step 2 — Latus Rectum of Hyperbola
Hyperbola ka latus rectum:
-
Har focus se guzarta hai
-
Transverse axis ke perpendicular hota hai
Equation:
Endpoints:
Length:
📌 Yeh coordinates exam mein direct use hote hain.
🔹 Step 3 — Right Angle Subtended at a Point (GAME CHANGER 🔥)**
Agar latus rectum ke endpoints
aur
kisi point par 90° subtend karein:
Two equivalent methods:
-
Slope method:
-
Vector method (cleaner 😎):
👉 Yehi ek condition aur ke beech
solid relation de deti hai.
🔹 Step 4 — Focus Given ⇒ Hyperbola Fixed
Question jab bole:
“One focus is at ”
Toh:
📌 Ab:
-
Ek equation geometry se
-
Ek equation right-angle condition se
👉 Solve karo → mil jaate hain.
🔹 Step 5 — Why JEE Asks (SMART OBSERVATION 🧠)**
JEE often poochta hai:
Reason:
-
symmetric expression hai
-
Square roots hat jaate hain
-
Final answer clean form mein aata hai
Once – relation mil gaya:
✅ Final Takeaway
🧠 Hyperbola Gold Rules
-
Focus ⇒ known
-
Hyperbola identity ⇒
-
Latus rectum endpoints ⇒
-
Right angle ⇒ dot product = 0
-
JEE loves ⇒
Is concept ko samajh liya,
👉 Hyperbola ke tough-looking questions bhi 1 minute mein khatam 🚀
Comments
Post a Comment
Have a doubt? Drop it below and we'll help you out!