Tough Calculus Question? Try This Shortcut for the π–Limit Integral! ⚡

 

❓ Question

Evaluate the integral:

0π(x+3)sinx1+3cos2xdx

🖼️ Question Image

Tough Calculus Question? Try This Shortcut for the π–Limit Integral! ⚡


✍️ Short Solution

We split the integral into two parts:

I=0πxsinx1+3cos2xdx+30πsinx1+3cos2xdx.I = \int_{0}^{\pi} \frac{x\sin x}{1+3\cos^{2}x}\,dx + 3\int_{0}^{\pi} \frac{\sin x}{1+3\cos^{2}x}\,dx.

Let:

I1=0πxsinx1+3cos2xdx,I2=0πsinx1+3cos2xdx.I_1=\int_0^\pi \frac{x\sin x}{1+3\cos^2x}\, dx,\qquad I_2=\int_0^\pi \frac{\sin x}{1+3\cos^2x}\, dx.


🔹 Step 1 — Simplify I1I_1 using substitution symmetry

Let

J=0πxsinx1+3cos2xdx.J=\int_0^\pi \frac{x\sin x}{1+3\cos^2x}\, dx.

Substitute:

x=πt,dx=dt,sin(πt)=sint,cos(πt)=cost.x=\pi - t,\qquad dx=-dt,\qquad \sin(\pi - t)=\sin t,\qquad \cos(\pi - t)=-\cos t.

Thus:

J=0π(πt)sint1+3cos2tdt.J=\int_0^\pi \frac{(\pi - t)\sin t}{1+3\cos^2 t}\, dt.

Add original and transformed integrals:

2J=0π(π)sint1+3cos2tdt2J = \int_0^\pi \frac{(\pi)\sin t}{1+3\cos^2 t}\, dt

because x+(πx)=πx + (\pi-x) = \pi.

Thus:

J=π20πsinx1+3cos2xdx.J = \frac{\pi}{2} \int_0^\pi \frac{\sin x}{1+3\cos^2 x}\, dx.

But this is just:

J=π2I2.

🔹 Step 2 — Solve I2I_2

I2=0πsinx1+3cos2xdx.

Let u=cosxu = \cos x, du=sinxdxdu = -\sin x\,dx.

When x=0,u=1x=0, u=1.
When x=π,u=1x=\pi, u=-1.

I2=11du1+3u2=11du1+3u2.

This is a standard form:

du1+a2u2=1atan1(au).

Here a=3a = \sqrt{3}:

I2=13[tan1(3u)]11=13(tan1(3)tan1(3)).I_2 = \frac{1}{\sqrt{3}}\left[\tan^{-1}(\sqrt{3}u)\right]_{-1}^{1} = \frac{1}{\sqrt{3}}\left(\tan^{-1}(\sqrt{3}) - \tan^{-1}(-\sqrt{3})\right).
tan1(3)=π3,tan1(3)=π3.

Thus:

I2=13(π3+π3)=2π33.

🔹 Step 3 — Compute total integral

We already found:

I1=π2I2.

So:

I=I1+3I2=π2I2+3I2=I2(3+π2).

Insert value of I2=2π33I_2 = \frac{2\pi}{3\sqrt{3}}:

I=2π33(3+π2).

Simplify:

I=2π336+π2=π(6+π)33.

🧮 Final Answer

π(6+π)33\boxed{\frac{\pi(6+\pi)}{3\sqrt{3}}}

Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE