JEE Matrix Trick: adj(adj(adj A)) = 81? Solve This Determinant Puzzle! 🔥

 

❓ Question

Let
A
be a 3×33 \times 3 matrix such that

adj(adj(adjA))=81.

If

S={nZ:adj(adjA)(n1)22=A3n25n4},

then

nSAn2+n

is equal to ?


🖼️ Question Image


✍️ Short Solution

We use two standard facts for an invertible n×nn \times n matrix AA:

  1. det(adjA)=(detA)n1\det(\operatorname{adj} A) = (\det A)^{n-1}

  2. For 3×3, n=3det(adjA)=A2n = 3 \Rightarrow \det(\operatorname{adj}A) = |A|^2

From adj(adj(adjA))=81|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))| = 81, we express everything in terms of A|A|, then solve the given equation for integers nn. Finally we compute nSAn2+n\sum_{n\in S} |A|^{n^2+n}


🔹 Step 1 — Express all determinants in terms of A|A|

Let

A=D.

For a 3×3 matrix:

  • First adjoint:

    B1=adjA,B1=A2=D2.
  • Second adjoint:

    B2=adj(B1),B2=B12=(D2)2=D4.
  • Third adjoint:

    B3=adj(B2),B3=B22=(D4)2=D8.

Given:

B3=adj(adj(adjA))=81,

so

D8=81=34.

Thus

A=D=±31/2=±3.

Also

adj(adjA)=B2=D4=(3)4=9.

So,

adj(adjA)=9.

🔹 Step 2 — Use the condition defining S

We’re given:

adj(adjA)(n1)22=A3n25n4.

Substitute:

9(n1)22=D3n25n4.

Write both sides as powers of 3.
Since 9=329 = 3^2

9(n1)22=(32)(n1)22=3(n1)2.

Also D2=3D^2 = 3, and D=±31/2D = \pm 3^{1/2}. For any such DD:

D3n25n4=(31/2)3n25n4 (up to a sign, which forces exponent even)=33n25n42.

So we equate exponents:

(n1)2=3n25n42.

Multiply by 2:

2(n22n+1)=3n25n42(n^2 - 2n + 1) = 3n^2 - 5n - 4
2n24n+2=3n25n42n^2 - 4n + 2 = 3n^2 - 5n - 4
0=n2n6.0 = n^2 - n - 6.

Solve:

n2n6=0(n3)(n+2)=0,n^2 - n - 6 = 0 \Rightarrow (n-3)(n+2) = 0,

so

n=3orn=2.n = 3 \quad \text{or} \quad n = -2.

Thus:

S={2, 3}.S = \{-2,\ 3\}.

🔹 Step 3 — Compute nSAn2+n\displaystyle \sum_{n \in S} |A|^{\,n^2 + n}

We need:

nSAn2+n=A(2)2+(2)+A32+3.\sum_{n \in S} |A|^{\,n^2 + n} = |A|^{(-2)^2 + (-2)} + |A|^{3^2 + 3}.

Exponents:

  • For n=2n = -2:

    n2+n=42=2.
  • For n=3n = 3:

    n2+n=9+3=12.

So:

A2=D2=3,|A|^2 = D^2 = 3,
A12=D12=(D2)6=36=729.

Therefore:

nSAn2+n=3+729=732.

✅ Final Answer

732\boxed{732}

Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE