Buffer pH Change Trick in 60 Seconds! 💡 | NH₃–NH₄Cl Super Shortcut

 

❓ Question

A basic buffer contains:

NH3=0.10 mol,NH4+=0.10 mol

Strong acid added:

HCl=0.05 mol

Given:

pKb(NH3)=4.745

Find the change in pH after adding HCl.


✍️ Short Solution

This is a weak base buffer (NH₃–NH₄Cl).
When HCl is added, it reacts completely with NH₃, converting it into NH₄⁺.
We then apply the Henderson–Hasselbalch equation for basic buffers to find the new pH.


🔹 Step 1 — Buffer System

NH3+NH4+\text{NH}_3 + \text{NH}_4^+

Both initially = 0.10 mol
→ Perfect weak base buffer.


🔹 Step 2 — Henderson–Hasselbalch Equation (Basic Buffer)

pOH=pKb+log(saltbase)\text{pOH} = pK_b + \log\left(\frac{\text{salt}}{\text{base}}\right)pH=14pOH\text{pH} = 14 - \text{pOH}

Given:

pKb=4.745

🔹 Step 3 — Reaction With Strong Acid

HCl reacts fully with NH₃:

NH3+HClNH4+\text{NH}_3 + \text{HCl} \rightarrow \text{NH}_4^+

HCl added = 0.05 mol

New moles:

NH3=0.100.05=0.05 mol\text{NH}_3 = 0.10 - 0.05 = 0.05\ \text{mol}NH4+=0.10+0.05=0.15 mol

🔹 Step 4 — New pH Using Henderson Equation

pOH=4.745+log(0.150.05)\text{pOH} = 4.745 + \log\left(\frac{0.15}{0.05}\right)log3=0.477\log 3 = 0.477

So,

pOH=4.745+0.477=5.222\text{pOH} = 4.745 + 0.477 = 5.222
pH=145.222=8.778

🔹 Step 5 — pH Change

Initial pH:

pOHinitial=4.745+log(0.100.10)=4.745\text{pOH}_{\text{initial}} = 4.745 + \log\left(\frac{0.10}{0.10}\right) = 4.745
pHinitial=144.745=9.255\text{pH}_{\text{initial}} = 14 - 4.745 = 9.255

Final pH = 8.778

Change in pH:

ΔpH=9.2558.778=0.477\Delta \text{pH} = 9.255 - 8.778 = 0.477
ΔpH=4.77×102\Delta \text{pH} = 4.77 \times 10^{-2}

Nearest integer form:

5×102

✅ Final Answer

5×102​

Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE