Stoichiometry Trick: How Much Water Forms When Butane Burns? 🔥

 

❓ Question

Butane reacts with oxygen to produce carbon dioxide and water following the equation:

C4H10(g)+132O2(g)4CO2(g)+5H2O(l)

If 174.0 kg of butane is mixed with 320.0 kg of O₂, the volume of liquid water formed (in liters, nearest integer) is ________.


🖼️ Question Image

Stoichiometry Trick: How Much Water Forms When Butane Burns? 🔥


✍️ Short Solution

We solve by:

  1. Converting given masses to moles.

  2. Identifying the limiting reagent using reaction stoichiometry.

  3. Using stoichiometry to find moles (and mass) of H₂O produced.

  4. Converting mass of liquid water to volume (density ≈ 1.00 g·mL⁻¹).

Stoichiometry Trick: How Much Water Forms When Butane Burns? 🔥

Step 1 — Molar masses & moles

  • Molar mass (approx):
    MC4H10=4(12.01)+10(1.008)=58.12 g\mol1M_{\mathrm{C_4H_{10}}}=4(12.01)+10(1.008)=58.12\ \text{g·mol}^{-1}

  • MO2=32.00 g\mol1M_{\mathrm{O_2}}=32.00\ \text{g·mol}^{-1}
    MH2O=18.015 g\mol1M_{\mathrm{H_2O}}=18.015\ \text{g·mol}^{-1}

  • Moles of butane:

    nC4H10=174000 g58.12 g\mol12993.81 moln_{\mathrm{C_4H_{10}}}=\frac{174000\ \text{g}}{58.12\ \text{g·mol}^{-1}}\approx 2993.81\ \text{mol}
  • Moles of oxygen:

    nO2=320000 g32.00 g\mol1=10000.00 mol

Step 2 — Limiting reagent

Reaction requires 132=6.5 \tfrac{13}{2}=6.5 mol O₂ per 1 mol C₄H₁₀.

  • O₂ required to fully consume available butane:

    6.5×2993.805919459.74 mol O26.5\times 2993.8059 \approx 19459.74\ \text{mol O}_2

We have only 10000 mol O₂ ⇒ O₂ is limiting.


Step 3 — Moles of H₂O formed

From reaction: 6.5 mol O₂ → 5 mol H₂O
So per mole O₂, H₂O formed = 5/6.5=0.76923077

Moles H₂O produced:

nH2O=10000×56.57692.308 mol

Mass of H₂O:

mH2O=7692.308×18.015138576.9 g=138.5769 kg

Step 4 — Volume of liquid water

Using density of water ≈ 1.00 g·mL⁻¹ (i.e. 1 kg = 1 L):

Volume=138576.9 g1000 g\L1138.5769 L

Nearest integer: 139 L.


✅ Final Answer

Volume of water produced139 L\boxed{\text{Volume of water produced} \approx 139\ \text{L}}

Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE