The sum of the series 2 × 1 × ²⁰C₄ − 3 × 2 × ²⁰C₅ + 4 × 3 × ²⁰C₆ − 5 × 4 × ²⁰C₇ + ⋯ + 18 × 17 × ²⁰C₂₀, is equal to:

 ❓ Question

Evaluate the sum of the series:

S=2×1×(204)3×2×(205)+4×3×(206)5×4×(207)++18×17×(2020).

🖼️ Question Image

The sum of the series 2 × 1 × ²⁰C₄ − 3 × 2 × ²⁰C₅ + 4 × 3 × ²⁰C₆ − 5 × 4 × ²⁰C₇ + ⋯ + 18 × 17 × ²⁰C₂₀, is equal to:


✍️ Short Solution

  1. The given terms are of the form:

(1)r(r+1)r(20r+3),r=1,2,,17.
  1. Simplify:

(r+1)r(20r+3)=(r+3)(r+2)(r+1)r20!(r+3)!(20r3)!.

Better trick: Use identity:

r(r+1)(20r+3)=20×19×(18r+1).
  1. So the sum becomes:

S=r=117(1)r20×19×(18r+1).

Factor constants:

S=380r=117(1)r(18r+1).
  1. Change index: let k=r+1k = r+1. Then k=2,3,,18k = 2,3,\ldots,18.

S=380k=218(1)k1(18k).
  1. Separate sign:

S=380k=218(1)k(18k).

But recall Binomial theorem:

k=018(1)k(18k)=(11)18=0.

So:

k=218(1)k(18k)=[(180)(1)0+(181)(1)1].\sum_{k=2}^{18} (-1)^k \binom{18}{k} = -\left[ \binom{18}{0}(-1)^0 + \binom{18}{1}(-1)^1 \right].
=(118)=17.= -(1 - 18) = 17.
  1. Thus:

S=380×17=6460.

🖼️ Image Solution

The sum of the series 2 × 1 × ²⁰C₄ − 3 × 2 × ²⁰C₅ + 4 × 3 × ²⁰C₆ − 5 × 4 × ²⁰C₇ + ⋯ + 18 × 17 × ²⁰C₂₀, is equal to:


✅ Conclusion & Video Solution

Hence, the sum of the series is:

6460


Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE