If the function f(x) = tan(tanx) − sin(sinx) / tanx − sinx is continuous at x = 0, then f(0) is equal to:

❓ Question:

If the function

f(x)=tan(tanx)sin(sinx)tanxsinx​

is continuous at x=0x=0, then find the value of f(0)f(0).


🖼️ Question Image

If the function f(x) = tan(tanx) − sin(sinx) / tanx − sinx  is continuous at x = 0, then f(0) is equal to:


✍️ Short Solution

  1. At x=0x=0:
    tan(tan0)=tan0=0,sin(sin0)=sin0=0.\tan(\tan 0) = \tan 0 = 0,\quad \sin(\sin 0)=\sin 0=0.
    So numerator = 00=00-0=0
    Denominator = tan0sin0=00=0.\tan 0 - \sin 0 = 0-0=0.
    ⇒ Indeterminate form 0/00/0. We must evaluate the limit as x0x\to0

  2. Apply series expansion around x=0x=0:

    • tanx=x+x33+O(x5).\tan x = x + \tfrac{x^3}{3} + O(x^5).

    • sinx=xx36+O(x5).\sin x = x - \tfrac{x^3}{6} + O(x^5).

    Hence,
    tanxsinx=(x+x33)(xx36)+O(x5)=x32+O(x5).\tan x - \sin x = \Big(x+\tfrac{x^3}{3}\Big) - \Big(x-\tfrac{x^3}{6}\Big) + O(x^5) = \tfrac{x^3}{2} + O(x^5).

  3. Expand numerator:

    • tan(tanx)tan ⁣(x+x33).\tan(\tan x) \approx \tan\!\big(x+\tfrac{x^3}{3}\big).
      Use tanuu+u3/3.\tan u \approx u + u^3/3.
      With u=x+x33u=x+\tfrac{x^3}{3}
      tan(tanx)(x+x33)+13(x+x33)3.\tan(\tan x) \approx (x+\tfrac{x^3}{3}) + \tfrac{1}{3}(x+\tfrac{x^3}{3})^3.
      x+x33+x33=x+2x33.x+\tfrac{x^3}{3} + \tfrac{x^3}{3} = x+\tfrac{2x^3}{3}.

    • sin(sinx)sin(xx36).\sin(\sin x) \approx \sin(x-\tfrac{x^3}{6}).
      Use sinvvv3/6.\sin v \approx v - v^3/6.
      With v=xx36v=x-\tfrac{x^3}{6}
      sin(sinx)(xx36)x36=xx33.\sin(\sin x) \approx (x-\tfrac{x^3}{6}) - \tfrac{x^3}{6} = x-\tfrac{x^3}{3}.

    So numerator = (x+2x33)(xx33)=x+2x33x+x33=x3.\big(x+\tfrac{2x^3}{3}\big) - \big(x-\tfrac{x^3}{3}\big) = x+ \tfrac{2x^3}{3} -x + \tfrac{x^3}{3} = x^3.

  4. Now ratio:

    f(0)=limx0numeratordenominator=limx0x3x3/2=2.

🖼️ Image Solution

If the function f(x) = tan(tanx) − sin(sinx) / tanx − sinx  is continuous at x = 0, then f(0) is equal to:


✅ Conclusion & Video Solution

Thus, by using Taylor expansions around zero, we resolve the indeterminate form and find:

f(0)=2\boxed{f(0)=2}

Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE