Resistance of Triangular Pyramid — Symmetry Trick in 59 Sec 🔥

❓ Concept

🎬 Resistance of a Triangular Pyramid — Concept in 59 Sec

Wire ko 3D pyramid shape mein bend kar diya…
sab segments same length, same material ke…
aur puchh liya:

👉 A aur B ke beech equivalent resistance kya hoga? ⚡🤯

Is type ke questions calculation se nahi,
symmetry se solve hote hain — bas wahi samajhna hai 🔥


🖼️ Concept Image

Resistance of Triangular Pyramid — Symmetry Trick in 59 Sec 🔥


✍️ Short Explanation

JEE mein jab bhi 3D resistance network dikhe,
sabse pehle symmetry dhoondo.

👉 Symmetry mil gayi = problem aadhi solve 😎


🔹 Step 1 — Equal Length ⇒ Equal Resistance (FOUNDATION 💯)**

Given:

  • Same material

  • Same length

  • Uniform wire bent into a pyramid

👉 Har edge ka resistance same hoga.

Total resistance RR uniformly distributed hai poore network mein.

📌 Matlab:

Har segment = identical resistor


🔹 Step 2 — Use Symmetry First (MOST IMPORTANT 🔥)**

Triangular pyramid perfectly symmetric hota hai.

Iska matlab:

  • Jo points geometry mein symmetric hain

  • Unka potential bhi same hoga (when current flows)

👉 Same potential points ko short-circuit kar sakte ho
without changing equivalent resistance.

🧠 Yeh trick JEE mein baar-baar kaam aati hai.


🔹 Step 3 — Reduce 3D Network to 2D

Symmetric points merge karne ke baad:

  • 3D structure collapse ho jaata hai

  • Circuit series–parallel combination mein convert ho jaata hai

📌 Jo network pehle impossible lag raha tha,
ab simple resistor diagram ban jaata hai 😄


🔹 Step 4 — Key Trick: Current Division

Because:

  • All paths equivalent hain

  • All resistances same hain

👉 Current equally divide hota hai har identical path mein.

Isliye:

  • Effective resistance sirf depend karta hai
    👉 kitne equal paths A se B tak hain


🔹 Step 5 — Golden JEE Strategy ⭐

🧠 Step-by-step approach:
1️⃣ Sab resistances equal mark karo
2️⃣ Symmetric nodes identify karo
3️⃣ Same-potential nodes merge karo
4️⃣ Network ko series–parallel mein reduce karo

📌 Aise problems ka final answer hamesha is form mein aata hai:

Req=Rn​

jahaan nn = number of equivalent current paths.


⭐ Golden Summary Box

  • Equal length ⇒ equal resistance

  • Symmetry ⇒ equal potential

  • Equal potential nodes can be merged

  • 3D → 2D reduction

  • Final form: R/nR/n


✅ Final Takeaway

Agar question bole:

“Triangular pyramid / tetrahedron / symmetric 3D network”

👉 Turant yaad karo:

Symmetry pe attack karo, calculation khud gir jaati hai 💥

No brute force.
No Kirchhoff.
Pure logic = pure marks 🚀

Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

If the equation of the line passing through the point (0, −1/2, 0) and perpendicular to the lines r = λ(î + aĵ + bk̂) and r = ( î - ĵ - 6k̂) + μ(−bî + aĵ + 5k̂) is x-1/-2 = y+4/d = z-c/-4, then a + b + c + d is equal to :