Resistance of Triangular Pyramid — Symmetry Trick in 59 Sec 🔥
❓ Concept
🎬 Resistance of a Triangular Pyramid — Concept in 59 Sec
Wire ko 3D pyramid shape mein bend kar diya…
sab segments same length, same material ke…
aur puchh liya:
👉 A aur B ke beech equivalent resistance kya hoga? ⚡🤯
Is type ke questions calculation se nahi,
symmetry se solve hote hain — bas wahi samajhna hai 🔥
🖼️ Concept Image
✍️ Short Explanation
JEE mein jab bhi 3D resistance network dikhe,
sabse pehle symmetry dhoondo.
👉 Symmetry mil gayi = problem aadhi solve 😎
🔹 Step 1 — Equal Length ⇒ Equal Resistance (FOUNDATION 💯)**
Given:
-
Same material
-
Same length
-
Uniform wire bent into a pyramid
👉 Har edge ka resistance same hoga.
Total resistance uniformly distributed hai poore network mein.
📌 Matlab:
Har segment = identical resistor
🔹 Step 2 — Use Symmetry First (MOST IMPORTANT 🔥)**
Triangular pyramid perfectly symmetric hota hai.
Iska matlab:
-
Jo points geometry mein symmetric hain
-
Unka potential bhi same hoga (when current flows)
👉 Same potential points ko short-circuit kar sakte ho
without changing equivalent resistance.
🧠 Yeh trick JEE mein baar-baar kaam aati hai.
🔹 Step 3 — Reduce 3D Network to 2D
Symmetric points merge karne ke baad:
-
3D structure collapse ho jaata hai
-
Circuit series–parallel combination mein convert ho jaata hai
📌 Jo network pehle impossible lag raha tha,
ab simple resistor diagram ban jaata hai 😄
🔹 Step 4 — Key Trick: Current Division
Because:
-
All paths equivalent hain
-
All resistances same hain
👉 Current equally divide hota hai har identical path mein.
Isliye:
-
Effective resistance sirf depend karta hai
👉 kitne equal paths A se B tak hain
🔹 Step 5 — Golden JEE Strategy ⭐
🧠 Step-by-step approach:
1️⃣ Sab resistances equal mark karo
2️⃣ Symmetric nodes identify karo
3️⃣ Same-potential nodes merge karo
4️⃣ Network ko series–parallel mein reduce karo
📌 Aise problems ka final answer hamesha is form mein aata hai:
jahaan = number of equivalent current paths.
⭐ Golden Summary Box
-
Equal length ⇒ equal resistance
-
Symmetry ⇒ equal potential
-
Equal potential nodes can be merged
-
3D → 2D reduction
-
Final form:
✅ Final Takeaway
Agar question bole:
“Triangular pyramid / tetrahedron / symmetric 3D network”
👉 Turant yaad karo:
Symmetry pe attack karo, calculation khud gir jaati hai 💥
No brute force.
No Kirchhoff.
Pure logic = pure marks 🚀
Comments
Post a Comment
Have a doubt? Drop it below and we'll help you out!