JEE Main: Absolute Maximum & Minimum on Interval — Smart Method 💡

 

❓ Question

Let

f(x)=x3+ax2+blogex+1,x0f(x) = x^3 + ax^2 + b\log_e|x| + 1,\quad x \ne 0

Given that

x=1 and x=2x = -1 \text{ and } x = 2

are the critical points of f(x)f(x).

Let mm and MM respectively be the absolute minimum and absolute maximum values of f(x)f(x) in the interval

[2,12].

Find:

M+m

🖼️ Question Image

JEE Main: Absolute Maximum & Minimum on Interval — Smart Method 💡


✍️ Short Solution

Critical points are obtained from

f(x)=0

We’ll first find constants aa and bb, then evaluate f(x)f(x) at endpoints and critical points inside the interval to get absolute max and min.


🔹 Step 1 — Find the derivative

f(x)=x3+ax2+blnx+1f(x) = x^3 + ax^2 + b\ln|x| + 1

Differentiate:

f(x)=3x2+2ax+bxf'(x) = 3x^2 + 2ax + \frac{b}{x}

🔹 Step 2 — Use critical points

Given critical points:

x=1,x=2x = -1,\quad x = 2

So,

f(1)=0,f(2)=0f'(-1) = 0,\quad f'(2) = 0

▶ At x=1x = -1

3(1)2+2a(1)+b1=03(-1)^2 + 2a(-1) + \frac{b}{-1} = 0
32ab=03 - 2a - b = 0
2a+b=3(Equation 1)2a + b = 3 \quad \text{(Equation 1)}

▶ At x=2x = 2

3(2)2+2a(2)+b2=03(2)^2 + 2a(2) + \frac{b}{2} = 0
12+4a+b2=012 + 4a + \frac{b}{2} = 0

Multiply by 2:

24+8a+b=024 + 8a + b = 0
8a+b=24(Equation 2)8a + b = -24 \quad \text{(Equation 2)}

🔹 Step 3 — Solve for aa and bb

Subtract (1) from (2):

(8a+b)(2a+b)=243(8a + b) - (2a + b) = -24 - 3
6a=27a=926a = -27 \Rightarrow a = -\frac{9}{2}

Substitute into (1):

2(92)+b=39+b=3b=122\left(-\frac{9}{2}\right) + b = 3 \Rightarrow -9 + b = 3 \Rightarrow b = 12

🔹 Step 4 — Write final function

f(x)=x392x2+12lnx+1f(x) = x^3 - \frac{9}{2}x^2 + 12\ln|x| + 1

🔹 Step 5 — Check points in the interval

Interval:

[2,12][-2,\,-\tfrac{1}{2}]

Points to check:

  • Endpoint: x=2x = -2

  • Critical point inside interval: x=1x = -1

  • Endpoint: x=12x = -\tfrac{1}{2}


f(2)f(-2)

f(2)=818+12ln2+1=25+12ln2f(-2) = -8 - 18 + 12\ln 2 + 1 = -25 + 12\ln 2

f(1)f(-1)

f(1)=192+12ln1+1f(-1) = -1 - \frac{9}{2} + 12\ln 1 + 1
ln1=0f(1)=92\ln 1 = 0 \Rightarrow f(-1) = -\frac{9}{2}

f(12)f(-\tfrac{1}{2})

f(12)=1898+12ln ⁣(12)+1f(-\tfrac{1}{2}) = -\frac{1}{8} - \frac{9}{8} + 12\ln\!\left(\frac{1}{2}\right) + 1
=108+112ln2=1412ln2= -\frac{10}{8} + 1 - 12\ln 2 = -\frac{1}{4} - 12\ln 2

🔹 Step 6 — Identify absolute max & min

Numerical comparison:

  • f(2)=25+12ln216.7f(-2) = -25 + 12\ln 2 \approx -16.7

  • f(1)=4.5f(-1) = -4.5

  • f(12)8.6f(-\tfrac{1}{2}) \approx -8.6

So:

M=f(1)=92M = f(-1) = -\frac{9}{2}
m=f(2)=25+12ln2m = f(-2) = -25 + 12\ln 2

🔹 Step 7 — Compute M+m|M + m|

M+m=9225+12ln2=592+12ln2M + m = -\frac{9}{2} - 25 + 12\ln 2 = -\frac{59}{2} + 12\ln 2

Taking modulus:

M+m=59212ln2|M + m| = \left|\frac{59}{2} - 12\ln 2\right|

Since 592>12ln2\frac{59}{2} > 12\ln 2:

M+m=59212ln2|M + m| = \boxed{\frac{59}{2} - 12\ln 2}

✅ Final Answer

59212ln2



JEE Main: Absolute Maximum & Minimum on Interval — Smart Method 💡

Comments

Popular posts from this blog

Ideal Gas Equation Explained: PV = nRT, Units, Forms, and JEE Tips [2025 Guide]

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Centroid of Circular Disc with Hole | System of Particles | JEE Physics | Doubtify JEE