Let y = y(x) be the solution of the differential equation (x² + 1)y′ − 2xy = (x⁴ + 2x² + 1)cosx, y(0) = 1. Then ³∫₋₃ y(x) dx is:

 Question

Let y=y(x)y = y(x)be the solution of the differential equation

(x2+1)y2xy=(x4+2x2+1)cosx,

with y(0)=1y(0) = 1.
Then evaluate:

33y(x)dx

Question Image

Let y = y(x) be the solution of the differential equation (x² + 1)y′ − 2xy = (x⁴ + 2x² + 1)cosx, y(0) = 1. Then ³∫₋₃ y(x) dx is:


Short Solution

  1. Rewrite the ODE in standard linear form:

    y2xx2+1y=(x4+2x2+1)cosxx2+1​
  2. Find the integrating factor:

    μ(x)=e2xx2+1dx=eln(x2+1)=1x2+1​
  3. Multiply the equation by μ(x)\mu(x):

    ddx(yx2+1)=cosx
  4. Integrate:

    yx2+1=sinx+C
  5. Apply y(0)=1y(0)=1:

    11=0+C    C=1
  6. Hence:

    y(x)=(x2+1)(sinx+1)
  7. Compute the definite integral:

    I=33y(x)dx=33(x2+1)(sinx+1)dx

Image Solution

Let y = y(x) be the solution of the differential equation (x² + 1)y′ − 2xy = (x⁴ + 2x² + 1)cosx, y(0) = 1. Then ³∫₋₃ y(x) dx is:


Conclusion

Break the integral:

I=33(x2+1)sinxdx+33(x2+1)dx
  • First term: (x2+1)sinx(x^{2}+1)\sin x is an odd function (because x2+1x^{2}+1 is even and sinx\sin x is odd)), so its integral over [3,3][-3,3] is 0.

  • Second term:

33(x2+1)dx=[x33+x]33=(9+3)(93)=12(12)=24

Final Answer:

33y(x)dx=24​

Video Solution

Comments

Popular posts from this blog

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Speed Reduced by 20%, Reaches 16 Minutes Late – Find Actual Time | Motion in Straight Line – JEE Question

⚡ Balance the Redox Equation: Zn + NO₃⁻ → Zn²⁺ + NH₄⁺ in Basic Medium | JEE Mains Redox Reaction