Let A = {(α, β) ∈ R × R : ∣α − 1∣ ≤ 4 and ∣β − 5∣ ≤ 6} and B = {(α, β) ∈ R × R : 16(α − 2)² + 9(β − 6)² ≤ 144}. Then:

 ❓ Question

Let

A={(αβ∈ R × R:  α − 1∣ ≤ 4,  β − 5∣ ≤ 6}

and

B={(αβ∈ R × R:  16(α − 2)² 9(β − 6)² ≤ 144}.

Then determine the relationship between sets A and B (containment, intersection, union, etc.).


🖼️ Question Image

Let A = {(α, β) ∈ R × R : ∣α − 1∣ ≤ 4 and ∣β − 5∣ ≤ 6} and B = {(α, β) ∈ R × R : 16(α − 2)² + 9(β − 6)²  ≤ 144}. Then:


✍️ Short Solution

Step 1 — Convert descriptions into ranges/standard form

  • For AA:
    α14α[3,5]|\alpha-1|\le4 \Rightarrow \alpha\in[-3,5]
    β56β[1,11]|\beta-5|\le6 \Rightarrow \beta\in[-1,11]
    So AA is an axis-aligned rectangle with opposite corners at (3,1)(-3,-1) and (5,11)(5,11). Center at (1,5)(1,5), width =8=8, height =12=12.

  • For BB: divide the inequality by 144144:

    (α2)29+(β6)2161.

    So BB is an ellipse centered at (2,6)(2,6) with semi-axes a=3a=3 in the α\alpha-direction and b=4b=4 in the β\beta-direction. Its xx-range (α-range) is 2±3=[1,5]2\pm3=[-1,5]; its yy-range (β-range) is 6±4=[2,10]6\pm4=[2,10]

Step 2 — Compare ranges

  • Rectangle AA spans α[3,5]\alpha\in[-3,5] and β[1,11]\beta\in[-1,11].

  • Ellipse BB spans α[1,5]\alpha\in[-1,5] and β[2,10]\beta\in[2,10].

Observe that every α\alpha-value of BB lies inside the α\alpha-range of AA (1(-1 is between 3-3 and 5)5), and every β\beta-value of BB lies inside the β\beta-range of AA (22 to 1010 is inside 1-1 to 1111). Because the ellipse is entirely contained within those coordinate bounds, the ellipse BB lies completely inside the rectangle AA.

Step 3 — Give set relationships

  • BAB\subseteq A.

  • The containment is proper because there exist points of AA not in BB. Example: take (3,5)A (left edge of the rectangle). Test in BB:
    16(32)2+9(56)2=1625+91=400+9=409>14416(-3-2)^2+9(5-6)^2=16\cdot25+9\cdot1=400+9=409>144. So (3,5)B(-3,5)\notin B. Thus BAB\subsetneq A.

  • Therefore AB=BA\cap B = B and AB=AA\cup B = A. Also ABA\setminus B is non-empty (points of the rectangle outside the ellipse).


🖼️ Image Solution

Let A = {(α, β) ∈ R × R : ∣α − 1∣ ≤ 4 and ∣β − 5∣ ≤ 6} and B = {(α, β) ∈ R × R : 16(α − 2)² + 9(β − 6)²  ≤ 144}. Then:


✅ Conclusion & Video Solution

Final relationships:

BA,AB=B,AB=A,AB.​

In words: the ellipse BB lies entirely inside the rectangle AA, but the rectangle has extra area outside the ellipse.

▶️ Watch the full video walkthrough:

Comments

Popular posts from this blog

Balanced Redox Reaction: Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O | JEE Chemistry

Speed Reduced by 20%, Reaches 16 Minutes Late – Find Actual Time | Motion in Straight Line – JEE Question

⚡ Balance the Redox Equation: Zn + NO₃⁻ → Zn²⁺ + NH₄⁺ in Basic Medium | JEE Mains Redox Reaction